Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya

Abstract

The formation of Antarctic Bottom Water—the cold, dense water that occupies the abyssal layer of the global ocean—is a key process in global ocean circulation. This water mass is formed as dense shelf water sinks to depth. Three regions around Antarctica where this process takes place have been previously documented. The presence of another source has been identified in hydrographic and tracer data, although the site of formation is not well constrained. Here we document the formation of dense shelf water in the Cape Darnley polynya (65°–69° E) and its subsequent transformation into bottom water using data from moorings and instrumented elephant seals (Mirounga leonina). Unlike the previously identified sources of Antarctic Bottom Water, which require the presence of an ice shelf or a large storage volume, bottom water production at the Cape Darnley polynya is driven primarily by the flux of salt released by sea-ice formation. We estimate that about 0.3–0.7×106 m3 s−1 of dense shelf water produced by the Cape Darnley polynya is transformed into Antarctic Bottom Water. The transformation of this water mass, which we term Cape Darnley Bottom Water, accounts for 6–13% of the circumpolar total.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intense sea-ice production in the CDP, revealed from satellite data.
Figure 2: Observations of new AABW production in Wild Canyon offshore from the CDP.
Figure 3: Bottom salinities of DSW and mSW from the instrumented seals.
Figure 4: Schematic of CDBW production.

Similar content being viewed by others

References

  1. Johnson, G. C. Quantifying Antarctic Bottom Water and North Atlantic Deep Water volumes. J. Geophys. Res. 113, C05027 (2008).

    Google Scholar 

  2. Orsi, A. H., Johnson, G. C. & Bullister, J. L. Circulation, mixing, and production of Antarctic Bottom Water. Prog. Oceanogr. 43, 55–109 (1999).

    Article  Google Scholar 

  3. Marshall, J. & Speer, K. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nature Geosci. 5, 171–180 (2012).

    Article  Google Scholar 

  4. Sigman, D. M. & Boyle, E. A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000).

    Article  Google Scholar 

  5. Baines, P. G. & Condie, S. in Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin (eds Jacobs, S. & Weiss, R.) 29–49 (Antarct. Res. Ser., Vol. 75, American Geophysical Union, 1998).

    Book  Google Scholar 

  6. Foster, T. D. & Carmack, E. C. Frontal zone mixing and Antarctic Bottom Water formation in the southern Weddell Sea. Deep Sea Res. Oceanogr. Abstr. 23, 301–317 (1976).

    Article  Google Scholar 

  7. Gordon, A. L., Huber, B. A., Hellmer, H. H. & Ffield, A. Deep and bottom water of the Weddell Sea’s western rim. Science 262, 95–97 (1993).

    Article  Google Scholar 

  8. Fahrbach, E., Harms, S., Rohardt, G., Schröder, M. & Woodgate, R. A. Flow of bottom water in the northwestern Weddell Sea. J. Geophys. Res. 106, 2761–2778 (2001).

    Article  Google Scholar 

  9. Foldvik, A. et al. Ice shelf water overflow and bottom water formation in the southern Weddell Sea. J. Geophys. Res. 109, C02015 (2004).

    Article  Google Scholar 

  10. Jacobs, S. S., Amos, A. F. & Bruchhausen, P. M. Ross Sea oceanography and Antarctic Bottom Water formation. Deep-Sea Res. Oceanogr. Abstr. 17, 935–970 (1970).

    Article  Google Scholar 

  11. Whitworth, T. III & Orsi, A. H. Antarctic bottom water production and export by tides in the Ross Sea. Geophys. Res. Lett. 33, L12609 (2006).

    Article  Google Scholar 

  12. Gordon, A. L. et al. Western Ross Sea continental slope gravity currents. Deep-Sea Res. II 56, 796–817 (2009).

    Article  Google Scholar 

  13. Rintoul, S. R. in Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin (eds Jacobs, S. & Weiss, R.) 151–171 (Antarct. Res. Ser., Vol. 75, American Geophysical Union, 1998).

    Book  Google Scholar 

  14. Williams, G. D., Bindoff, N. L., Marsland, S. J. & Rintoul, S. R. Formation and export of dense shelf water from the Adélie Depression, East Antarctica. J. Geophys. Res. 113, C04039 (2008).

    Article  Google Scholar 

  15. Williams, G. D. et al. Antarctic Bottom Water from the Adélie and George V Land coast, East Antarctica (140–149° E). J. Geophys. Res. 115, C04027 (2010).

    Google Scholar 

  16. Jacobs, S. S. & Georgi, D. T. in A voyage of discovery (ed. Angel, M.) 43–84 (Pergamon Press, 1977).

    Google Scholar 

  17. Mantisi, F., Beauverger, T., Poisson, A. & Metzl, N. Chlorofluromethanes in the western Indian sector of the Southern Ocean and their relations with geochemical tracers. Mar. Chem. 35, 151–167 (1991).

    Article  Google Scholar 

  18. Meredith, M. P. et al. On the sources of Weddell Gyre Antarctic Bottom Water. J. Geophys. Res. 105, 1093–1104 (2000).

    Article  Google Scholar 

  19. Hoppema, M. et al. Prominent renewal of Weddell Sea Deep Water from a remote source. J. Mar. Res. 59, 257–279 (2001).

    Article  Google Scholar 

  20. Orsi, A. H. & Whitworth, T. III in Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE). Volume 1: Southern Ocean (eds Sparrow, M., Chapman, P. & Gould, J.) (International WOCE Project Office, 2005).

    Google Scholar 

  21. Meijers, A. J. S., Klocker, A., Bindoff, N. L., Williams, G. D. & Marsland, S. J. The circulation and water masses of the Antarctic shelf and continental slope between 30 and 80° E. Deep-Sea Res. II 57, 723–737 (2010).

    Article  Google Scholar 

  22. Middleton, J. H. & Humphries, S. E. Thermohalinestructure and mixing in the region of Prydz Bay, Antarctica. Deep-Sea Res. 36, 1255–1266 (1989).

    Article  Google Scholar 

  23. Nunes Vaz, R. A. & Lennon, G. W. Physical oceanography of the Prydz Bay region of Antarctic waters. Deep-Sea Res. I 43, 603–641 (1996).

    Article  Google Scholar 

  24. Yabuki, T. et al. Possible source of the Antarctic Bottom Water in the Prydz Bay region. J. Oceanogr. 62, 649–655 (2006).

    Article  Google Scholar 

  25. Tamura, T., Ohshima, K. I. & Nihashi, S. Mapping of sea-ice production for Antarctic coastal polynyas. Geophys. Res. Lett. 35, L07606 (2008).

    Article  Google Scholar 

  26. Fedak, M.A. Marine mammals as platforms for oceanographic sampling: A win/win situation for biology and operational oceanography. Mem. Natl Inst. Polar Res. 58, 133–147 (2004).

    Google Scholar 

  27. Charrassin, J-B. et al. Southern Ocean frontal structure and sea-ice formation rates revealed by elephant seals. Proc. Natl Acad. Sci. USA 105, 11634–11639 (2008).

    Article  Google Scholar 

  28. Williams, G. D. et al. Upper ocean stratification and sea ice growth rates during the summer-fall transition, as revealed by Elephant seal foraging in the Adélie Depression, East Antarctica. Ocean Sci. 7, 185–202 (2011).

    Article  Google Scholar 

  29. Massom, R. A., Harris, P. T., Michael, K. J. & Potter, M. J. The distribution and formative processes of latent-heat polynyas in East Antarctica. Ann. Glaciol. 27, 420–426 (1998).

    Article  Google Scholar 

  30. Fraser, A. D., Massom, R. A., Michael, K. J., Galton-Fenzi, B. K. & Lieser, J. L. East Antarctic landfast sea-ice distribution and variability, 2000–2008. J. Clim. 25, 1137–1156 (2012).

    Article  Google Scholar 

  31. Matsumura, Y. & Hasumi, H. Modeling ice shelf water overflow and bottom water formation in the southern Weddell Sea. J. Geophys. Res. 115, C10033 (2010).

    Article  Google Scholar 

  32. Darelius, E., Smedsrud, L. H., Østerhus, S., Foldvik, A. & Gammelsrød, T. Structure and variability of the Filchner overflow plume. Tellus Ser. A 61, 446–464 (2009).

    Article  Google Scholar 

  33. Wang, Q., Danilov, S. & Schröter, J. Bottom water formation in the southern Weddell Sea and the influence of submarine ridges: Idealized numerical simulations. Ocean Model. 28, 50–59 (2008).

    Article  Google Scholar 

  34. Budillon, G., Castagno, P., Aliani, S., Spezie, G. & Padman, L. Thermohaline variability and Antarctic bottom water formation at the Ross Sea shelf break. Deep-Sea Res. I 58, 1002–1018 (2011).

    Article  Google Scholar 

  35. Roquet, F. et al. Delayed-mode calibration of hydrographic data obtained from animal-borne satellite relay data loggers. J. Atmos. Ocean. Technol. 41, 787–801 (2011).

    Article  Google Scholar 

  36. Gordon, A. L., Visbeck, M. & Huber, B. Export of Weddell Sea Deep and Bottom Water. J. Geophys. Res. 106, 9005–9017 (2001).

    Article  Google Scholar 

  37. Orsi, A. H. & Wiederwohl, C. L. A recount of Ross Sea waters. Deep-Sea Res. II 56, 778–795 (2009).

    Article  Google Scholar 

  38. Orsi, A. H., Smethie, W. M. Jr & Bullister, J. L. On the total input of Antarctic waters to the deep ocean: A preliminary estimate from chlorofluorocarbon measurements. J. Geophys. Res. 107, 3122 (2002).

    Article  Google Scholar 

  39. Meredith, M. P., Watson, A. J., van Scoy, K. A. & Haine, T. W. N. Chlorofluorocarbon-derived formation rates of the deep and bottom waters of the Weddell Sea. J. Geophys. Res. 106, 2899–2919 (2001).

    Article  Google Scholar 

  40. Naveira Garabato, A. C., McDonagh, E. L., Stevens, D. P., Heywood, K. J. & Sanders, R. J. On the export of Antarctic Bottom Water from the Weddell Sea. Deep-Sea Res. II 49, 4715–4742 (2002).

    Article  Google Scholar 

  41. Kusahara, K., Hasumi, H. & Williams, G. D. Impact of Mertz Glacier Tongue calving on dense shelf water. Nature Commun. 2, 159 (2011).

    Article  Google Scholar 

  42. Tamura, T., Williams, G. D., Fraser, A. D. & Ohshima, K. I. Potential regime shift in decreased sea ice production after the Mertz Glacier calving. Nature Commun. 3, 826 (2012).

    Article  Google Scholar 

  43. Meredith, M. P., Naveira Garabato, A. C., Gordon, A. L. & Johnson, G. C. Evolution of the deep and bottom waters of the Scotia Sea, Southern Ocean, during 1995–2005. J. Clim. 21, 3327–3343 (2008).

    Article  Google Scholar 

  44. Fahrbach, E. et al. Warming of deep and abyssal water masses along the Greenwich meridian on decadal time scales: The Weddell gyre as a heat buffer. Deep-Sea Res. II 58, 2508–2523 (2011).

    Google Scholar 

  45. Purkey, S. G. & Johnson, G. C. Global contraction of Antarctic Bottom Water between the 1980s and 2000s. J. Clim. 25, 5830–5844 (2012).

    Article  Google Scholar 

  46. Harris, P. T. Ripple cross-laminated sediments on the East Antarctic Shelf: Evidence for episodic bottom water production during the Holocene? Mar. Geol. 170, 317–330 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

We are deeply indebted to the officers, crew and scientists on board TR/V Umitaka-maru and R/V Hakuho-maru for their help with field observations. Comments by R. A. Massom and support from K. Shimada and K. Kitagawa were helpful. The AMSR-E and SSM/I data were provided by the National Snow and Ice Data Center (NSIDC), University of Colorado. The ASAR data were provided by European Space Agency. IMOS seal CTD data were provided through the Australian Animal Tracking and Monitoring System, a facility of Integrated Marine Observing System. Isles Kerguelen deployments were supported by the French Spatial Agency (CNES) and the French Polar Institute (IPEV). This work was supported by Grants-in-Aids for Scientific Research (20221001, 20540419, 21740337, 23340135) of the Ministry of Education, Culture, Sports, Science and Technology in Japan, and the Australian Government’s Cooperative Research Centres Programme through the Antarctic Climate & Ecosystem Cooperative Research Centre.

Author information

Authors and Affiliations

Authors

Contributions

K.I.O. and Y.F. conducted and analysed mooring observations after planning the experiment with M.W., S.A. and T.T. G.D.W. led the investigation of seal data with calibration by F.R., analysis by L.H-B., and fieldwork by I.F. and M.H. S.N. and T.T. analysed satellite data. Y.K. and D.H. conducted hydrographic observations.

Corresponding authors

Correspondence to Kay I. Ohshima, Yasushi Fukamachi or Guy D. Williams.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1720 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohshima, K., Fukamachi, Y., Williams, G. et al. Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya. Nature Geosci 6, 235–240 (2013). https://doi.org/10.1038/ngeo1738

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1738

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene